SAT-based Reasoning Techniques for LTL over Finite and Infinite Traces

Jianwen Li

East China Normal University Main work done at Rice University

July 31, 2022

- ▶ First introduced to Computer Science by A. Pnueli in 1977
- Formal verification (over infinite traces: LTL)
- ► AI (over finite traces : *LTL_f*)

Linear Temporal Logic

Syntax for LTL and LTL_f

 $\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid X\phi \mid \phi U\phi \mid \phi R\phi \mid G\phi \mid F\phi;$

•
$$\neg(\phi_1 U \phi_2) = \neg \phi_1 R \neg \phi_2$$

• $\neg X \phi = N \neg \phi$ (Weak Next), for LTL_f only
• $F \phi = tt U \phi$
• $G \phi = ff R \phi$

Linear Temporal Logic

- ▶ LTL semantics: $n = \propto$
- ► LTL_f semantics: n < ∞</p>

LTL vs. LTL_f

- Xtt is always true in LTL, but not in LTL_f
- $\blacktriangleright (a \land Xtt) \not\equiv a \text{ in } LTL_f$

$$\blacktriangleright \neg X\phi \neq X \neg \phi \ (\neg X\phi = N \neg \phi)$$

• $GX\phi$ is never satisfiable in LTL_f

This Talk

Present an on-the-fly approach to construct automata by SAT solvers

Show one of its applications to solve LTL_f satisfiability checking problem

$LTL(_{f})$ to Automata

$LTL(_{f})$ to Automata

$$\phi \Longleftrightarrow \bigvee_i (\alpha_i \wedge X(\psi_i))$$

$LTL(_f)$ to Automata

Bottleneck: $\phi \iff \bigvee_i (\alpha_i \wedge X(\psi_i))$ is expensive!

$LTL(_f)$ to Automata

Bottleneck: $\phi \iff \bigvee_i (\alpha_i \land X(\psi_i))$ is expensive! Question: Is it possible to generate ONE successor at one time (on the fly)? If considering the temporal subformulas as atoms, an $LTL(_f)$ formula ϕ becomes a Boolean formula.

We say ϕ is in XNF iff only X/N subformulas can be its atom.

neXt Normal Form (XNF)

Example

- $(a \lor bUc) \land cRd \text{ is not in XNF}$
- $(a \lor c \lor b \land X(bUc) \land d \land (c \lor X(cRd))$ is in XNF

1. Input formula ϕ : $(aUb) \land (\neg bU \neg a)$

- 1. Input formula ϕ : $(aUb) \land (\neg bU \neg a)$
- 2. $xnf(\phi)$: $(b \lor (a \land X(aUb))) \land (\neg a \lor (\neg b \land X(\neg bU \neg a)))$

- 1. Input formula ϕ : $(aUb) \land (\neg bU \neg a)$
- 2. $xnf(\phi)$: $(b \lor (a \land X(aUb))) \land (\neg a \lor (\neg b \land X(\neg bU \neg a)))$
- 3. Take $xnf(\phi)$ as the input of a SAT solver

- 1. Input formula ϕ : $(aUb) \land (\neg bU \neg a)$
- 2. $xnf(\phi)$: $(b \lor (a \land X(aUb))) \land (\neg a \lor (\neg b \land X(\neg bU \neg a)))$
- 3. Take $xnf(\phi)$ as the input of a SAT solver
- 4. SAT solver may return: $\{a, \neg b, X(aUb), X(\neg bU \neg a)\}$
 - A transition in the automaton is $\phi \xrightarrow{a \wedge \neg b} (aUb) \wedge (\neg bU \neg a)$

- 1. Input formula ϕ : $(aUb) \land (\neg bU \neg a)$
- 2. $xnf(\phi)$: $(b \lor (a \land X(aUb))) \land (\neg a \lor (\neg b \land X(\neg bU \neg a)))$
- 3. Take $xnf(\phi)$ as the input of a SAT solver
- 4. SAT solver may return: $\{a, \neg b, X(aUb), X(\neg bU \neg a)\}$
 - A transition in the automaton is $\phi \xrightarrow{a \wedge \neg b} (aUb) \wedge (\neg bU \neg a)$

To construct the whole automaton, just do enumeration!

LTL_f Satisfiability Checking

Problem

Given an LTL_f formula ϕ , is there a finite trace ξ s.t. $\xi \models \phi$?

Fa is satisfiable;

Fa \wedge $G \neg a$ is unsatisfiable;

Determining Final State

Introduce a new atom Tail to associate with X

$$X\psi \Longrightarrow \neg Tail \wedge X\psi$$

Example

- $\blacktriangleright b \lor X(aUb) \Longrightarrow b \lor \neg Tail \land X(aUb)$
- $\blacktriangleright XX\phi \Longrightarrow \neg Tail \land X(\neg Tail \land X\phi)$

Determining Final State

Theorem

 ϕ is a final state iff $Tail \wedge xnf(\phi)$ is satisfiable (Boolean formula).

BLSC: Basic SAT-based Checking

Algorithm 1 BLSC: Basic on-the-fly *LTL_f* Satisfiability Checking

Require: An LTL_f formula ϕ .

Ensure: SAT or UNSAT.

- 1: if $Tail \wedge xnf(\phi)$ is satisfiable then
- 2: return SAT;

3: end if

4: Add ϕ into *block_list*;

5: Let
$$\psi = xnf(\phi) \land \neg X(block_list);$$

- 6: while ψ is satisfiable do
- 7: Let t be a propositional assignment for ψ ;

8: Let
$$\phi' = \bigwedge \{\theta | X \theta \in t\};$$

9: **if** BLSC (
$$\phi'$$
) returns SAT **then**

- 11: end if
- 12: end while

13: return UNSAT;

BLSC performs very well in small instances, but lacks of scalability

- BLSC performs very well in small instances, but lacks of scalability
- Computing states via SAT solvers does not save the space!

- BLSC performs very well in small instances, but lacks of scalability
- Computing states via SAT solvers does not save the space!
- Question: Can BLSC be improved?

- BLSC performs very well in small instances, but lacks of scalability
- Computing states via SAT solvers does not save the space!
- Question: Can BLSC be improved?
 - BLSC leverages the satisfiability from SAT solvers

- BLSC performs very well in small instances, but lacks of scalability
- Computing states via SAT solvers does not save the space!
- Question: Can BLSC be improved?
 - BLSC leverages the satisfiability from SAT solvers
 - BLSC discards the unsatisfiability from SAT solvers

Tail \wedge *xnf*(ϕ) is UNSAT

\Longrightarrow

there is ψ s.t $\psi \subseteq \phi^1$ and $Tail \land xnf(\psi)$ is still unsatisfiable (UNSAT core)

¹Consider ϕ have the form of $\bigwedge \phi_i$

Tail \wedge *xnf*(ϕ) is UNSAT

there is ψ s.t $\psi \subseteq \phi^1$ and $Tail \land xnf(\psi)$ is still unsatisfiable (UNSAT core)

- $\blacktriangleright \ \psi$ can be provided by a SAT solver
- $\blacktriangleright \ \psi$ represents a set of states that cannot reach a final state in 0 step

¹Consider ϕ have the form of $\bigwedge \phi_i$

Conflict Sequence: $C = C_0, C_1, C_2, \ldots, C_k (k \ge 0)$

 \triangleright C_i : a set of states that cannot reach a final state in *i* steps

Conflict Sequence: $C = C_0, C_1, C_2, \dots, C_k (k \ge 0)$

C_i : a set of states that cannot reach a final state in i steps

- Guided search:
 - ▶ ψ is known in some $C_i \implies$ a next state of ψ not in C_i is preferred: $xnf(\phi) \land \neg XC_i$

• Otherwise, check final state: $Tail \wedge xnf(\psi)$

Conflict Sequence: $C = C_0, C_1, C_2, \dots, C_k (k \ge 0)$

C_i : a set of states that cannot reach a final state in i steps

- Guided search:
 - ▶ ψ is known in some $C_i \implies$ a next state of ψ not in C_i is preferred: $xnf(\phi) \land \neg XC_i$

• Otherwise, check final state: $Tail \wedge xnf(\psi)$

► Unsatisfiability check: $\bigcap_{0 \le j \le i} C_j \subseteq C_{i+1}$

Evaluation

- Benchmarks: 7446 LTL-as-LTL_f formulas in previous work
- Platform: Rice Davinci cluster
- Timeout: 60 seconds for each instance
- Tools:
 - 1. Aalta-finite [LZPVH14]
 - 2. Aalta-infinite [LZPV15]
 - 3. Itl2sat [FG16]
 - 4. nuXmv (IC3+KLIVE) [CCDGMMMRT14]
 - 5. BLSC
 - 6. CDLSC

Evaluation

Figure 1: Cactus plot for LTL_f Satisfiability Checking on LTL-as- LTL_f Benchmarks.

Beyond Satisfiability Checking

- On-the-fly Synthesis for LTL over finite traces [AAAI2019]
- Satisfiability checking for LTL over infinite traces[FMSD 2019]
- Synthesis for LTL over infinite traces?
- On-the-fly LTL model checking?
- Extension to word-level?

Figure 2: Shanghai, Oct. 2019.

Hope to see you again VERY soon!